In order to add our switch to the database, we need to setup node and interface types for them.
We provide some SQL to make this easy. The script switch-types-create defines the following:
For other switch types, please refer to the Emulab Documentation.
These are now loaded by the boss-install script, but if you need to load them by hand:
mysql tbdb < ~<builduser>/testbed/sql/interface-types-create.sql mysql tbdb < ~<builduser>/testbed/sql/switch-types-create.sql
Your switch needs a name that resolves. You must add it either to /etc/hosts or to the name server running on boss.
To add it to the name server, add it into /etc/namedb/<yoursitename>.internal.db.head. You then refresh the DNS server by running /usr/testbed/sbin/named_setup.
For example, on mini-isi.deterlab.net we have our switch that we will name hp1 at 192.168.254.1 on the HARDWARE_CONTROL network. So we add it to DNS as follows:
[jhickey@boss ~]$ sudo su - boss# echo "hp1 IN A 192.168.254.1" >> /etc/namedb/mini-isi.deterlab.net.internal.db.head boss# logout [jhickey@boss ~]$ /usr/testbed/sbin/named_setup [jhickey@boss ~]$ ping -c 1 hp1 PING hp1.mini-isi.deterlab.net (192.168.254.1): 56 data bytes 64 bytes from 192.168.254.1: icmp_seq=0 ttl=63 time=3.496 ms --- hp1.mini-isi.deterlab.net ping statistics --- 1 packets transmitted, 1 packets received, 0.0% packet loss round-trip min/avg/max/stddev = 3.496/3.496/3.496/0.000 ms [jhickey@boss ~]$
Using the hostname you have given your switch, insert a line in the the nodes table in the database. If you are adding a dedicated control network switch, use ctrlswitch as the role. Otherwise, the role is testswitch.
insert into nodes set node_id='hp1',phys_nodeid='hp1',type='hp2180',role='testswitch';
If your installation has more than one switch, we need to tell the database about it so that vlan trunking can be enabled and so that it doesn't try to oversubscribe the link. We created interface types earlier in this document. Let's say we have hp1 and hp2 which are connected by a single 1GbE link. hp2 module A, port 5 is connected to hp1 module B, port 23. We need to add two lines to the interfaces table (note that current_speed is in Mbits now):
insert into interfaces set node_id='hp1',card=2,port=23,mac='000000000000',iface='B/23',role='other', current_speed='1000',interface_type='trunk_1GbE',uuid=UUID(); insert into interfaces set node_id='hp2',card=1,port=5,mac='000000000000',iface='A/5',role='other', current_speed='1000',interface_type='trunk_1GbE',uuid=UUID();
We also need to add an entry to the wires table for these two switches:
insert into wires set node_id1='hp1',card1=2,port1=23, node_id2='hp2',card2=1,port2=5, type='Trunk';
Also, make sure to set the interface state to up and trunked:
insert into interface_state set node_id='hp1', card=2, port=23, iface='B/23', enabled=1, tagged=1; insert into interface_state set node_id='hp2', card=1, port=5, iface='A/5', enabled=1, tagged=1;
Note: For switches that are not modular, set card to 1. For Ethernet interfaces, card starts at (and typically is) 0.
The idea of switch stacks comes from sites that run separate control and experimental networks. In this scenario, it does not make sense to create experimental vlans on switches that function only as control network switches and vice versa. The typical DETER deployment scenario will be a switch that handles both. In this case, we add the same switch to the two different stacks ('Experiment' and 'Control' which we also have to setup in switch_stack_types). We also make sure that is_primary is set to 1 for the Experimental stack line and 0 for the Control stack line (I assume so that we only try creating vlans once per switch).
First, create our switch_stack_types. For our mini-isi setup, we have the two types:
insert into switch_stack_types (stack_id, stack_type, snmp_community, leader) values ('Control', 'generic', 'private', 'hp1'); insert into switch_stack_types (stack_id, stack_type, snmp_community, leader) values ('Experiment', 'generic', 'private', 'hp1');
So in our mini-isi example, we need to add in two entries for our switch hp1:
insert into switch_stacks (node_id,stack_id,is_primary) values ('hp1','Experiment',1), ('hp1','Control',0);
On boss, run wap snmpit -l -l to list all vlans. For example, your output should look something like this (right now there might be some MIB warnings):
[jhickey@boss ~]$ wap snmpit -l -l VLAN Project/Experiment VName Members -------------------------------------------------------------------------------- CONTROLH CONTROLHW hp1.1/3 hp1.1/4 hp1.1/5 CONTROL CONTROL hp1.1/3 hp1.1/6 hp1.1/7 hp1.1/8 hp1.1/9 hp1.1/10 hp1.1/11 hp1.1/12 INTERNET INTERNET hp1.1/1 hp1.1/2 hp1.1/3 BOSS BOSS hp1.1/3 [jhickey@boss ~]$
This is pretty much the same as with the switch above. Technically, you can get away without this step since the IP address will also be in the database, but it is good housekeeping.
For example, on mini-isi.deterlab.net we have our switch that we will name apc23 at 192.168.254.23 on the HARDWARE_CONTROL network. So we add it to DNS as follows:
[jhickey@boss ~]$ sudo su - boss# echo "apc23 IN A 192.168.254.23" >> /etc/namedb/mini-isi.deterlab.net.internal.db.head boss# logout [jhickey@boss ~]$ /usr/testbed/sbin/named_setup [jhickey@boss ~]$ ping -c 1 apc23 PING apc23.mini-isi.deterlab.net (192.168.254.23): 56 data bytes 64 bytes from 192.168.254.23: icmp_seq=0 ttl=254 time=3.476 ms --- apc23.mini-isi.deterlab.net ping statistics --- 1 packets transmitted, 1 packets received, 0.0% packet loss round-trip min/avg/max/stddev = 3.476/3.476/3.476/0.000 ms
We assume you are using an APC 7902 networked power controller. The default node_type for this is 'APC'.
Now add in a node entry for the power controller. For mini-isi, our power controller is named apc23:
insert into nodes set node_id='apc23', phys_nodeid='apc23', type='APC', role='powerctrl';
Now add a line to the interfaces table. For mini-isi, the power controller is at 192.168.254.23:
insert into interfaces set node_id='apc23', IP='192.168.254.23', mask='255.255.255.0', interface_type='fxp', iface='eth0', role='other';
Now, finally we need a wires table entry:
insert into wires set node_id1='apc23', card1=0, port1=1, node_id2='hp1', card2=1, port2=4, type='Control';
This is jumping the gun since we have not gotten to the point of adding PC type nodes to the testbed yet, but when we do, they will go in the outlets table.
mysql> describe outlets; +------------+---------------------+------+-----+-------------------+-------+ | Field | Type | Null | Key | Default | Extra | +------------+---------------------+------+-----+-------------------+-------+ | node_id | varchar(32) | NO | PRI | | | | power_id | varchar(32) | NO | | | | | outlet | tinyint(1) unsigned | NO | | 0 | | | last_power | timestamp | NO | | CURRENT_TIMESTAMP | | +------------+---------------------+------+-----+-------------------+-------+ 4 rows in set (0.00 sec)
So to add, say pc001 which is on apc23 port 1, we would do:
insert into outlets set node_id='pc001', power_id='apc23', outlet=1;
You can add in a dummy entry and test if you like.
TBD. We hope to have a VMWare image with the necessary software for DigiEtherlite devices soon.